Drug Rescue of Repetitive Grooming Behaviors in Drosophila Fragile X Mental Retardation Mutants. Catalina Florez1, Matthew Whitmill1, Melissa Kepke1, Linda Restifo2, William Conner1. 1) Department of Biology, Wake Forest University, Winston-Salem, NC 27106; 2) Department of Neuroscience and Neurology, and Center for Insect Science, University of Arizona, Tucson, AZ 86721.
Fragile X Syndrome (FXS) is a condition that strongly increases the prevalence of autism. The cause for FXS is a single gene mutation in the fragile-x-mental retardation 1 gene that leads to the loss of functional fragile-x-mental retardation protein (FMRP), which is an important regulator of postsynaptic protein synthesis. Drosophila melanogaster have proven to be very significant in FXS research, as the dFMR1 gene is the fruit fly ortholog of the human FMR1 gene. Previous studies have shown that compounds such as 6 methyl-2-(phenylethynyl) pyridine hydrochloride (MPEP) inhibit glutamate receptor activation, reducing the overexpression of postsynatpic proteins thought to be responsible for many FXS symptoms. In this study, genetically altered mutants (dFMR1) and wild type (EX16) Drosophila were administered 10 g of the drug MPEP in their larval diet. The effects of the drug on the grooming behavior of the Drosophila were examined through video recording and scoring the individual behavior of individual flies. It has been observed that Drosophila have a specific repertoire of grooming behaviors, and that the display of these behaviors is different in dFMR1 mutants than wildtype animals. This study investigates these differences in an effort to quantify the effects of MPEP on FXS symptom expression.