Female-expressed genes that affect the post mating response in Drosophila melanogaster. Alexandra L. Mattei, Jessica L. Sitnik, Frank W. Avila, Amber R. Krauchunas, Mariana F. Wolfner. Cornell University, Ithaca, NY.
Seminal fluid proteins (SFPs) from male Drosophila cause behavioral and physiological changes in mated female flies. These changes, collectively called the female post mating response (PMR), include rejection of further mating, increased feeding, increased egg production, decreased lifespan, and changes in gene expression. It is not well understood how proteins produced by the female fly contribute to the PMR. We are studying the roles of three female-expressed proteins in the PMR; we are using systemic or localized knockdown in females followed by assessment of PMR in those flies. For two genes, encoding angiotensin converting enzyme (ANCE) and neuropeptide like precursor 3 (nplp3), the phenotypes of knockdown females suggest roles in determining the number of eggs laid for 10 days post-mating. A third gene, encoding the sex peptide receptor (SPR), is already known to be essential for elevating egg-laying post-mating. However, SPRs ligand (the sex peptide) is also essential for controlling the release of sperm stored in the mated female. We are testing whether SPR is necessary for this aspect of SP action. Our results will enhance the understanding of the genes, proteins and mechanisms involved in male-female interactions in reproduction. They have potential application to the control of insect pests, such as the mosquito Aedes aegypti that is the vector for dengue fever, Chikungunya, and yellow fever.