Quantitative Gene Expression Analysis of Drosophila melanogaster in a Fetal Alcohol Spectrum Disorder Model. David Do, Theresa Logan, Peter Luu, Omar Fateen, Brianna Hagen, Janet Lafler, Luke Lajoie, Melissa Ruiz, Clare Wadsworth, Audrey Ford, Schehrbano Khan, Hilal Jarrar, Elizabeth Benn-Hirsch, Rachael French. Biological Sciences, San Jose State University, San Jose, CA.

   The purpose of our research is to elaborate upon an existing model for Fetal Alcohol Spectrum Disorder (FASD) using Drosophila melanogaster as a genetic model organism. Preliminary research has shown that Drosophila raised on ethanol-treated food exhibit physical and behavioral defects commonly associated with FASD in humans. This has led to a plethora of divergent research that is attempting to implicate the various biochemical pathways responsible for regulating these phenotypes. In order to determine the target genes for further investigation, our lab used Affymetrix GeneChip microarrays in order to conduct pangenomic expression analysis on extracted RNA samples. Thorough analysis of the microarray data shows strong evidence for altered expression levels for the genes that regulate oxidative stress; cell growth, proliferation, and differentiation; insulin signaling; lipid metabolism; olfaction; and responses to environmental toxins. We hypothesize that the aforementioned pathways are involved in mediating the physical and behavioral phenotypes of ethanol-reared flies. Along with microarray data, we intend to conduct a series of qPCR experiments on our various RNA samples as a means to concretely affirm the altered expression levels of key gene constructs as a result of ethanol exposure during development. We are currently waiting for the results of said experiment and the data accrued will serve to expand the established model of FASD.