Rapid evolution and differential expression of transcripts associated with sex chromosome meiotic drive in stalk-eyed flies. Josephine A. Reinhardt1, Richard H. Baker2, Gerald S. Wilkinson1. 1) Biology, University of Maryland College Park, College Park, MD; 2) Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY.

   Sex chromosome meiotic drive causes a distortion of population sex ratios in many dipterans. In the stalk-eyed fly, Teleopsis dalmanni, males carrying the meiotic drive X chromosome parent almost exclusively daughters. The drive haplotype (XD) is present at a high frequency in natural populations covering a wide geographic, genetic, and temporal distance. The XD haplotype associates with a large portion of the X chromosome (which is novel in T. dalmanni relative to other dipterans) and is thought to be maintained by a chromosomal rearrangement suppressing recombination with standard X chromosomes. In addition, the drive haplotype is known to cause a variety of pleiotropic effects in males. To understand how drive may be operating genetically, we obtained Illumina transcriptomes from T. dalmanni testes that carried the meiotic drive haplotype (XD) and standard X chromosomes (XST). We identified hundreds of transcripts that were differentially expressed between XD and XST testes. When compared with other transcripts, genes that were differentially expressed in XD testes were more likely to be X-linked and to show testes-biased expression. The majority of these genes - particularly those that were the most strongly differentiated - had no orthologs in diptera and had low protein-coding potential. These results imply that drive-associated differences in gene expression occur on the novel X chromosome and may be driven by rapid evolution of genes, including putative noncoding RNA genes. Finally, we found that hundreds of X-linked transcripts carry fixed differences between XD and XST samples while only a handful of such differences were found in autosomal genes. This supports the hypothesis that the XD haplotype long ago ceased recombination with XST, revealing a genomic mechanism for the maintenance of the drive phenotype.