Effects of Perfluoroocatanoic Acid (PFOA) on growth and development in the fruit fly, Drosophila melanogaster. AnnJosette Ramirez, Kristin Johndreau, Amber K. Weiner, Ashley Parker, Kara Bennett, Caroline Rachfalski, Sheryl Smith. Biology, Arcadia University, Glenside, PA.
Perfluorooctanoic Acid (PFOA) is a synthetic compound that is used in the manufacture of water-repellent products such as nonstick cookware, household cleaners, furniture and carpet treatments, clothing, and food packaging containers. Human exposure to PFOA has been addressed in a number of studies including one report that PFOA serum levels for adults living in the US were in the range of 4-5ng/mL, with even higher levels reported for children. In vivo studies using vertebrate and invertebrate model systems suggest that PFOA affects endocrine signaling that results in reproductive abnormalities. We investigated the effects of PFOA in Drosophila melanogaster using three concentrations (5mM, 0.5 mM, and 0.05 mM) orally administered through feeding, beginning at the first instar larval stage. At 5 mM PFOA concentration, growth was affected, resulting in larvae that were approximately one half the size of the untreated control larvae. Interestingly, lower concentrations of PFOA (0.5 mM, and 0.05 mM) produced larvae that were slightly larger in size than non-treated control larvae. Although the mechanisms underlying PFOA-induced size defects are poorly understood, a mutation in the Tor gene (Tor P) have produced similar effects to those observed for the 5 mM treatment. We therefore tested the effects of PFOA in this mutant and found that PFOA-induced growth defects were slightly modulated in this background, suggesting that PFOA exerts its effects, in part, through the Target of rapamycin (Tor) signaling pathway. We are currently carrying out gene expression studies to further elucidate the mechanism(s) underlying PFOA toxicity in Drosophila.