Modulators for Prominin and EYS function in photoreceptor morphogenesis. Jing Nie, Simpla Mahato, Andrew Zelhof. Biology, Indiana University Bloomington, Bloomington, IN.
To accommodate the phototransduction machinery, photoreceptor cells of invertebrate and vertebrate animals have developed different strategies to expand their apical membrane: the tightly packed microvilli in invertebrate rhabdomeric photoreceptors and the tightly stacked membrane discs in vertebrate ciliated photoreceptor cells. Despite the morphological difference, our work has demonstrated that these two fundamental photoreceptor cell types utilize shared structural molecules, the transmembrane protein Prominin and the extracellular protein EYS, to drive the morphogenesis of their respective phototransduction compartments. Prominin and EYS are critical components in photoreceptor cells in that mutations in either of these genes cause defects in morphogenesis leading to retinal degeneration. Here we will present data from our proteomic and genetic approaches to uncover modulators required for Prominin and EYS function in Drosophila photoreceptor morphogenesis. Our findings provide insights into not only Drosophila eye development but also human retinal diseases.