Characterizing the interaction of neuron and glia by electroretinogram. Po-An Yeh, Henry Sun. Molecular Biology, Taipei, Taiwan.
Neurodegenerative diseases have been intensively studied. An increasing body of evidence shows that glia played an important role in the progression or propagation of neurodegeneration pathology. Nonetheless, the molecular mechanism of the crosstalk between neuron and glia is still unclear or under debate. Fly retina, a very regular and well organized structure, has been utilized to study neural diseases. In addition, electroretinogram (ERG) can diagnose very subtle deficit before the photoreceptor neurons completely lose their function or die. Taking advantage of this system, we attempted to investigate the interaction between neuron and glia. We found that expression of several polyglutamine-expanded proteins exclusively in glial cell resulted in reverse ERG signal without apparent morphological and anatomical deficit. Conversely, expressing these in retina did not cause acute neuronal deficit, suggesting that glia cells, instead of neurons, are more vulnerable to these polyglutamine-expanded proteins. These data gives a new vista to explore the effect on neuronal function by manipulating the surrounding glia. This tool will facilitate us into underlining the pathological mechanism of human neurodegenerative disorders.